extensions of regular ‎rings‎

نویسندگان

sh. a. safari ‎sabet‎

department of ‎mathematics,‎ central tehran branch, islamic azad university, tehran, ‎iran‎ m. farmani

young researchers and elite club, roudehen branch, islamic azad university, roudehen, ‎iran

چکیده

let $r$ be an associative ring with identity. an element $x in r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if there exist $g in g$, $n in mathbb{z}$ and $r in r$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). a ring $r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if every element of $r$ is $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular). in this paper, we characterize $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) rings. furthermore, this paper includes a brief discussion of $mathbb{z}g$-regularity in group ‎rings.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of Regular ‎Rings‎

Let $R$ be an associative ring with identity. An element $x in R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if there exist $g in G$, $n in mathbb{Z}$ and $r in R$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). A ring $R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if every element of $R$ is $mathbb{Z}G$-regular (resp. strongly $...

متن کامل

Commutative Regular Rings without Prime Model Extensions

It is known that the theory K of commutative regular rings with identity has a model completion K . We show that there exists a countable model of K which has no prime extension to a model of K'. If K and K ate theories in a first order language L, then K is said to be a model completion of K if K extends K, every model of K can be embedded in a model of K , and for any model A of K and models ...

متن کامل

Extensions of strongly alpha-reversible rings

We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...

متن کامل

Ore extensions of skew $pi$-Armendariz rings

For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...

متن کامل

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of industrial mathematics

جلد ۸، شماره ۴، صفحات ۳۳۱-۳۳۷

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023